EFFECT Photonics to open facility in the US

EFFECT Photonics to open facility in the US

The world is moving towards tunability. The combination of tunable lasers and dense wavelength division multiplexing (DWDM) allows datacom and telecom industries to expand their network capacity without increasing their existing fiber infrastructure. Furthermore, the miniaturization of coherent technology into pluggable transceiver modules has finally enabled the widespread implementation of IP over DWDM solutions. Self-tuning algorithms have also made DWDM solutions more widespread by simplifying their installation and maintenance. Hence, many application cases—metro transport, data center interconnects, and even future access networks—are moving towards coherent tunable pluggables.

The market for coherent tunable transceivers will explode in the coming years, with LightCounting estimating that annual sales will double by 2026. Telecom carriers and especially data center providers will drive the market demand, upgrading their optical networks with 400G, 600G, and 800G pluggable transceiver modules that will become the new industry standards.

This increase in transceiver demand also means that component and equipment vendors also need more tunable lasers to build such transceivers. However, through several recent acquisitions and mergers, the transceiver market is consolidating into fewer companies that will develop these high-performance tunable lasers, modulators, and receivers internally. This situation reduces the laser supply on the market and makes it harder for independent component and equipment manufacturers to source lasers and other optical components for their pluggable and co-packaged systems. These trends point towards a market need for new independent providers of integrated tunable laser assemblies (ITLAs).

Same Laser Performance, Smaller Package

As the industry moves towards packing more and more transceivers on a single router faceplate, tunable lasers need to maintain performance and power while moving to smaller footprints and lower power consumption and cost. Due to the faceplate density requirements for data center applications, transceiver power consumption is arguably the most critical factor in this use case. In fact, power consumption is the main obstacle preventing pluggables from becoming a viable solution for a future upgrade to Terabit speeds. Since lasers are the second biggest power consumers in the transceiver module, laser manufacturers faced a paradoxical task. They must manufacture laser units that are small and energy-efficient enough to fit QSFP-DD and OSFP pluggable form factors while maintaining the laser performance.

Fortunately, these ambitious spec targets became possible thanks to improved photonic integration technology. The original 2011 ITLA standard from the Optical Internetworking Forum (OIF) was 74mm long by 30.5mm wide. By 2015, most tunable lasers shipped in a micro-ITLA form factor that cut the original ITLA footprint in half. In 2021, the nano-ITLA form factor designed for QSFP-DD and OSFP modules has once again cut the micro-ITLA footprint almost in half. The QSFP-DD modules that house the full transceiver are smaller (78mm by 20mm) than the original ITLA form factor. Stunningly, tunable laser manufacturers achieved this size reduction without impacting laser purity and power.

Share this post

Leave a Reply

Your email address will not be published.

SIMILAR POSTS.

Test 1

The world is moving towards tunability. The combination of tunable lasers and dense wavelength division…

Test 2

The world is moving towards tunability. The combination of tunable lasers and dense wavelength division…

Test 3

The world is moving towards tunability. The combination of tunable lasers and dense wavelength division…

Share This

Copy Link to Clipboard

Copy